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1 The Traffic Signal Control Problem

1.1 Introduction

Urban traffic networks are facing serious congestion problems, in part due to sub-optimal control
policies governing the traffic lights. My report will look at and compare several decentralized,
dynamic algorithms recently proposed in the literature, all based on the ”Back Pressure” algorithm
from [1].

1.2 Model and Terminologies

Here I give a very general model of the traffic signal control problem. Consider a network of
intersecting roadsN as a tupleN = (L,J ) where L = {L1, . . . , LN} is the set of road segments with
direction (called links) so that a two-way street segment gives two links in L, and J = {J1, . . . , JL}
is the set of nodes of intersection, called junctions. For each node n ∈ J , I(n) ⊂ L is the set
of links entering n, and O(n) ⊂ L is the set of links leaving n. Since all links are uni-directional,
assume ∀n ∈ J , I(n)∩O(n) = Ø. Mn ⊂ I(n)×O(n) is the set of all possible movements through n.
Sn ⊂ P(Mn) is a collection of subsets of Mn, whose elements are sets of simultaneously permissible

movements through n. Note that Mn’s are all disjoint for n ∈ J . Let M =
⋃
n∈J

Mn be the union

of these possible movements at all junctions. My terminology will follow the European Standard
where elements of Mn are called phases or movements, and elements of Sn is called stages. See
Figure 1 for an example of a junction and its allowable stages.

Our model operates on discrete time slots of τ seconds, which is the minimum duration for any
stage at a junction. Time slots are labelled by t ∈ N. Furthermore, for l ∈ L, let Inl ⊂ L be the
set of links that can go into l, i.e. Inl ⊂ I(n) where n is the unique junction s.t. l ∈ O(n) unless
l leads traffic from outside the network into the network, in which case Inl = Ø. Similarly define
Outl. For each link l ∈ L, let Ql(t) be the number of vehicles queueing at link l at the end of time
slot t. For each phase (a, b) ∈ M, let r(a, b) be the proportion of vehicles entering b upon leaving
a, and let c(a, b) be the saturation flow for this phase, in vehicles per time slot. Finally, vehicles
can enter and exit the network at any link, let Dl(t) be the number of exogenous vehicles entering
link l at time slot t. Let dl = E[Dl(t)] be the expected arrival rate in link l. The exit proportion

for link l is just 1−
∑

m∈Outl

r(l,m).
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Figure 1: Typical Sn = {Sa, Sb, Sc, Sd} for a 4-way junction n where I(n) = {L1,L4,L6,L7},
O(n) = {L2,L3,L5,L8}
(a) Sa = {(L1,L3), (L1,L5), (L4,L2), (L4,L8)}
(b) Sb = {(L1,L8), (L4,L5)}
(c) Sc = {(L6,L3), (L6,L8), (L7,L2), (L7,L5)}
(d) Sd = {(L6,L2), (L7,L3)}

Figure 2: Control Matrix S as a block diagonal matrix with junction control matrices Sn, Sm along
the diagonal

The objective is to select for each time slot, (Sn(t) ∈ Sn, n ∈ J ) for t = 1, 2, 3, . . ., so that all
queues (Ql(t), l ∈ L) are stable, or equivalently, that the long term average of all queue lengths is
bounded, or that the Markov Chain (Ql, l ∈ L) is positive recurrent.

Note: Mn are all disjoint, and for each link l, there is at most one n s.t. l ∈ I(n), and at
most one m s.t. l ∈ O(m). According to [2], Sn(t) can be represented by a binary matrix where

Sn(t)(m, l) = 1 if and only if (m, l) ∈ Sn(t). Furthermore, S(t) =
⋃
n∈J

Sn(t) can be represented

by a single block diagonal matrix S(t) with Sn(t) as diagonal blocks, see Figure 2. Therefore the
control policy essentially selects S(t) for each t. Let S be the set of all possible selections of S(t).
It is the Cartesian product S = S1 × S2 × · · · × SL of all possible stages for each junction.
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2 Refresher of the Back Pressure Algorithm

2.1 Back Pressure Algorithm

I will first recall the back pressure algorithm. In the Multihop Radio Network considered in [1], a
network with N nodes and L links represented by a directed graph N = (L,J ) are considered. L
is the set of nodes and J is the set of links. Customers come in J different classes, each with a
different set of destination nodes. Customers may come at any node. Time is discreet and at each
time slot, only certain subset of the links can serve customers, and each server can serve one class
of customers. Let S be the set of subsets of J that can be served simultaneously. Link i serves the
customer successfully with probability mi from node q(i) to node h(i). Customers do not commit
to an outgoing link when they arrive. Let Qaj(t) be the length of the virtual queue at node a
for customers of class j. Then the back pressure algorithm, which achieves maximum throughput,
finds the links and customer classes to serve in 3 stages.

Stage 1 For each link i, a weight Wi(t) is computed by

Wij(t) =

{
(Qq(i)j(t− 1)−Qh(i)j(t− 1))mi if h(i) is not one of the destinations of class j

Qq(i)j(t− 1) if otherwise

Then Wi(t) = Wiĵi
(t) is the maximum across all Wij ’s, j = 1, 2, . . . , J .

Stage 2 The activation set ĉ is selected by

ĉ = arg max
c∈S

∑
i∈c

Wi(t)

Stage 3 For each link i, activate it at slot t if and only if i ∈ ĉ and let it serve class ĵi.

2.2 Motivation for Considering the Back Pressure Algorithm

Our model for the Traffic Control Problem (TCP) is similar to that of the Multihop Radio
Network (MRN) in many ways, as I have suggested by using the same symbols. The phases are
the links in MRN, each junction in TCP corresponds to a collection of the links in MRN and the
links (roads with directions) in TCP are the nodes in MRN. Choosing a stage for each junction is
like choosing a class to serve for each link while making sure that certain links (certain phases) are
not activated simultaneously. However there are several differences too, as pointed out in [3].

Firstly the final destination of each vehicle is unknown to the TCP controller. Thus instead of
dividing the vehicles into classes based on their exit links, the best one can do is to only partition
the vehicles queueing at each link according to the immediate outgoing link at each junction. This
induces another difference: in MRN the customers do not commit to an outgoing link until a routing
decision is made, but in TCP the vehicles are sorted into different lanes for different outgoing links
before their phase is activated.

Secondly in MRN the virtual queues are easily created, but in TCP one lane can have vehicles
that go to multiple links and thus makes it impossible to fully divide the vehicles into finer queues
by the link they are going into. See Figure 1 for an example: the left-most lane on L1 can enqueue
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both vehicles going into L3 and L5, since these two phases are always simultaneously activated
in the allowable stages. Moreover, as [4] points out, even when each lane corresponds to only one
outgoing link, vehicles do not split up by lanes until they are close to the junction. Nevertheless, the
ability to measure these finer queues is an important assumption made by the algorithm proposed
by [2].

Thirdly in MRN the controller has complete control over the routing of the customers, but in
TCP, the controller only actuates stages and if during a certain stage, a vehicle can go to multiple
outgoing links, the routing is the driver’s choice. Fortunately, the ratios r(a, b) can help characterize
the overall behavior of large number of vehicles.

Despite the differences, the idea of using back pressure weighted by service rates still provides
an effective way of designing a distributed traffic control system.

3 Universal Feedback Control Policy (UCP) by Varaiya(2009)

3.1 Additional Assumptions

The links L in UCP is a special case of the general model, where L is partitioned into three
subsets Linternal, Lentry and Lexit. dl is non-zero only for link l ∈ Lentry, exit proportion is 1 for
all l ∈ Lexit, and exit proportion is 0 for all other links.

UCP also assumes the controller has the finer queue lengths Qab(t) for each time slot t, where
Qab(t) denotes the number of vehicles queueing on link a that intend to turn to link b. Naturally

∀a ∈ L, Qa(t) =
∑

b∈Outa

Qab(t) in this model, since exit links do not lead to any other links.

3.2 Characterizing the Throughput Region

First let fl be the flow of vehicles on link l. It can be shown that for every demand d = (dl, l ∈
Lentry), there is a unique flow f = f(d) = (fl, l ∈ L) satisfying:

fl =

dl, l ∈ Lentry∑
m∈Inl

fmr(m, l), l ∈ L \ Lentry

Then by using the family of randomize policies, [2] shows that the throughput region D is the set
of all d such that for the corresponding flow f = f(d), ∃Σ ∈ co(S) (convex hull of the set of control
matrices) s.t.

∀(l,m) ∈M,flr(l,m) ≤ c(l,m)Σ(l,m)

3.3 The Control Algorithm

The algorithm is distributed: to compute the stage Sn(t) for junction n, it only require informa-
tion about links near n, and computes Sn(t) in three stages.
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Stage 1 For each junction n and each phase (l,m) in Mn, a (back-pressure-like) weight Wn,(l,m)(t)
is computed by

Wn,(l,m)(t) = Qlm(t− 1)−
∑

p∈Outm

r(m, p)Qmp(t− 1)

Stage 2 Calculate the gain γn(Sn)(t) for each possible stage Sn ∈ Sn by

γn(Sn)(t) =
∑

(l,m)∈Sn

c(l,m)Wn,(l,m)(t)

Stage 3 Select the stage Sn(t) = Ŝn to activate by

Ŝn = arg max
Sn∈Sn

γn(Sn)(t)

3.4 Evaluation

As [2] shows, UCP achieves the maximum throughput as characterized in previous section. Al-
though it uses a special link set L, it is shown in [4] that it is generalizable to network structures
of our general model with little modification. However, there are still several limitations. Firstly,
as pointed out earlier, UCP requires knowledge of r(l,m) for all (l,m) ∈M , which is hard to come
by accurately in practice. Secondly, it requires lengths of the finer queues Qab(t) for all (a, b) ∈M ,
which, as discussed before, are hard to measure accurately as well. Thirdly, in practice it is possible
for congestion at one link l to extend to affect all links m ∈ Inl. UCP, however, assumes infinite
buffer capacities for all links. It is not quite clear whether UCP is still stabilizing in the model
where links have limited buffer size.

4 Another distributed algorithm by Wongpiromsarn et al. (2012)

4.1 Additional Assumptions

In contrast with UCP discussed in previous section, [3] does not assume finer queue lengths
Qab(t) or routing ratios r(a, b). However, for each junction n, it requires a finite set Zn of traffic
states around junction n and a rate function ξn : Sn×Mn×Zn → N0 that, given the current stage,
movement and traffic state, gives the rate of traffic flow. It also assumes that the vector of traffic
states z(t) = (zn(t), n = 1, 2, 3, . . . , L) is a finite state, irreducible aperiodic Markov Chain with a
stationary distribution. Let Z = Z1 × · · · × ZL

4.2 Characterize the Throughput Region

Define the vector function ξ : S×Z → N|M |
0 where the kth coordinate of ξ(S, z) is ξn(Sn, (a, b), zn)

where (a, b) is the kth phase in M and n is the unique junction s.t. a ∈ I(n) and b ∈ O(n), denote
this kth coordinate by ξ(S, z)ab. Suppose the stationary distribution of z(t) is P[z(t) = z] = πz.
Now define:

Γ =
∑
z∈Z

πzco{ξ(S, z)|S ∈ S}
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Then the throughput region D is the set of all d such that ∃Σ ∈ Γ together with a flow f : M → R
that satisfies:

f(l,m) ≥ 0,∀(l,m) ∈M

dl =
∑

m∈Outl

f(l,m)−
∑
p∈Inl

f(p, l),∀l ∈ L

f(l,m) = Σlm, ∀(l,m) ∈M

4.3 The Control Algorithm

The algorithm is also distributed, and is similar to UCP. It computes Sn(t) in three stages:

Stage 1 For each junction n, and each phase (l,m) in Mn, the back-pressure weight Wn,(l,m)(t) is
computed by:

Wn,(l,m)(t) = Ql(t− 1)−Qm(t− 1)

Stage 2 Calculate the gain γn(Sn)(t) for each possible stage Sn ∈ Sn by:

γn(Sn)(t) =
∑

(l,m)∈Sn

ξn(Sn, l,m, zn(t))Wn,(l,m)(t)

Stage 3 Select the stage Sn(t) = Ŝn to activate by:

Ŝn = arg max
Sn∈Sn

γn(Sn)(t)

4.4 Evaluation

[3] shows that the algorithm achieves maximum throughput provided that z(t) is i.i.d. from slot
to slot. It seems to use only the aggregated queue lengths Qa(t) for each link a and it does not
seem to require the routing ratio r(a, b) either. However, the additional assumption of traffic state
space Z is in fact so strong that it encodes almost all the assumptions of UCP.

Just using aggregated queue length Qa(t) is not enough for UCP because the controller would not
know which outgoing link requires most service for vehicles on link a. Comparing only aggregated
queue lengths can lead the system to activate movements from a that do not need service, and as
a consequence waste resource. However, ξn can presumably compensate for that because in this
particular traffic state where Qab(t) = 0, ξn(Sn, a, b, zn(t)) = 0 as well, so the weight Wn,(a,b)(t)
does not contribute to the stage Sn.

ξn(Sn, a, b, zn(t)) also implicitly uses the routing ratio r(a, b) when zn(t) represent the cases of
saturated flow. The rate at which vehicles go from a to b in this situation should be c(a, b)r(a, b),
where c(a, b), used in UCP, is the saturated flow assuming all traffic on a is going into b.
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In summary, although the back-pressure weight is computed using only the aggregated queue
length, the traffic state z(t) in this algorithm encodes a great amount of information and as a result,
Z can be a very large set. Moreover, the assumption that z(t) is i.i.d. is an over-simplification
because each stage choice at a time slot will affect the traffic state at the next slot, and it is not
clear whether this algorithm is still achieves optimal throughput when one considers the additional
complexity of the traffic states. It is also unknown how the algorithm behaves when links have
finite buffer sizes.

5 Variation on UCP by Gregoire et al. (2014)

5.1 Additional Assumptions

The algorithm proposed in [4], called BP Control, assumes neither finer queue lengths nor routing

ratios. It only requires a vehicle detector variable in [0, 1] defined as δab(t) = min(Qab(t)
c(a,b) , 1). It

signifies a degree to which the finer queue Qab(t) is non-empty.

5.2 Characterizing the Throughput Region

Since BP is a variation of UCP with no change to the model, the throughput region is the same
as the one D defined in Section 3.2.

5.3 The Control Algorithm

BP is again distributed and computes Sn(t) in three stages.

Stage 1 Foe each junction n and each phase (l,m) ∈ Mn, a back-pressure weight Wn,(l,m)(t) is
computed by

Wn,(l,m)(t) = δlm(t)max(Ql(t− 1)−Qm(t− 1), 0)

Stage 2 Calculate the gain γn(Sn)(t) for each possible stage Sn ∈ Sn for junction n by

γn(Sn)(t) =
∑

(l,m)∈Sn

c(l,m)Wn,(l,m)(t)

Stage 3 Select the stage Sn(t) = Ŝn to activate by

Ŝn = arg max
Sn∈Sn

γn(Sn)(t)

5.4 Evaluation

The BP Controller only uses quantities that are relatively easy to measure accurately, such as
aggregated queue length Qa(t) and vehicle detector variable δab(t), which can be measured by loop
detectors positioned at lanes dedicated to one specific movement. However, it no longer achieves
maximum throughput. Characterizing the stability region of BP is still a challenging problem,
but [4] compared the performance of BP and UCP by simulations on a 21× 21 grid network with
4-way junctions of the kind shown in Figure 1. The relevant parameters are randomized, and BP
on averaged supported around 80% of the maximum arrival rates supported by UCP. However,
other network topologies need to be investigated to further support the claim that BP achieves
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a significant part of the throughput region. However, finite buffer sizes for links are still not
considered.

6 Conclusion

The approaches of both UCP by [2] and the algorithm by [3] achieve maximum throughput of
the network, though with different models. UCP requires at each time slot the number of vehicles
queueing at each link for each outgoing link, as well as the knowledge of routing ratios. The
latter algorithm, on the other hand, requires a rate function on a finite traffic state space which
potentially can be very large and, for the most part, encapsulates the two requirements of UCP.
The BP algorithm in [4] foregoes some throughput performance in order to eliminate these two
assumptions of UCP and gives a more realistic and practical solution. The loss of performance
is only roughly 20% for grid networks but its performance for arbitrary network topologies need
to be further investigated. None of the three algorithms considered in the report deals with the
possibility that links have finite buffer sizes.
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