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Theorem 0.1 (casus irreducibilis) If p(x) ∈ Q[x] is an irreducible cubic polynomial with three real
roots, then it is impossible to obtain any of the roots with only real radicals.

Lemma 0.2 Suppose F is a subfield of R and let a be an element of F . Let p be prime and let α = p
√
a

be the pth real root of a. Then [F (α) : F ] = 1 or p.
Proof of Lemma 0.2 Let mα be the minimal polynomial of α over F , and suppose its degree is
d ≤ p. Since mα divides xp − a, all its roots are pth roots of a, in the form of αζjp for some integer j,
where ζp is the pth root of unity.

The constant term of mα lies in F and is the product of all its roots, so it is αdζkp for some integer
k, as products of pth roots of unity is still a pth root of unity. Therefore αdζkp is real. Since αd is real,
ζkp is real, so ζkp = ±1.

Therefore αd ∈ F . ∃a, b ∈ Z s.t. ad+ bp = (d, p) by Euclid’s Algorithm. So α(d,p) = (αd)a(αp)b ∈ F .
(d, p) = 1 or p. If (d, p) = p, since d ≤ p, it follows that d = p and [F (α) : F ] = d = p. If (d, p) = 1, then
α ∈ F and [F (α) : F ] = 1.

Proof of casus irreducibilis: Let p(x) be an irreducible polynomial in Q[x] with three real roots a, b, c.
Consider the discriminant D of p(x).

D = (a− b)2(a− c)2(b− c)2

Since we are in C, p(x) is separable and a, b, c are all distinct. Since they are all real, D > 0, and it
has a real square root

√
D ∈ R. p(x) is still irreducible in Q(

√
D) because a quadratic extension cannot

contain any root of p, an irreducible cubic whose roots have degree 3 over Q. Now, since D is a perfect
square in Q(

√
D), the Galois group of p(x) over Q(

√
D) is inside A3, so the splitting field of p(x) over

Q(
√
D) is at most degree 3. In other words, adjoining any root to Q(

√
D) will give all three roots.

By way of contradiction, suppose one of the roots is expressable in real radicals, then it lives inside
a real radical extension of Q, and consequently lives inside a real radical extension of Q(

√
D). By the

previous discussion, all three roots are in that real radical extension of Q(
√
D). We hence have the tower

Q = K0 ⊂ K1 = Q(
√
D) ⊂ K2 ⊂ · · · ⊂ Ks

where each Ki ⊂ R and Ki+1 = Ki( ni
√
αi) for some αi ∈ Ki, and a, b, c ∈ Ks.

Notice that s ≥ 2 because p(x) is irreducible over K1, per previous discussion.
Notice also that for a simple radical extension F ( mn

√
α)/F , it can be further broken down into

two simple radical extensions F ( n
√

m
√
α)/F ( m

√
α)/F . Therefore WLOG, we can assume that Ki+1 =

Ki( pi
√
αi) for some prime pi. By Lemma 0.2 we know that [Ki+1 : Ki] = pi.

WLOG, suppose that s is chosen so that Ks is the first field in the tower to split p(x), then by
previous discussion, Ks−1 does not contain any of the roots a, b, c.

Since Ks−1 contains no root of p(x), p(x) is irreducible over Ks−1. Since p(x) splits in Ks, [Ks : Ks−1]
is a multiple of 3. However, this is a prime degree extension by assumption so [Ks : Ks−1] = 3 = ps−1,
i.e. Ks = Ks−1(a, b, c) is the splitting field of p(x) over Ks−1, hence it is a Galois extension. By
construction, Ks = Ks−1( 3

√
αs−1), and x3 − αs−1 is irreducible over Ks−1. As a Galois extension, Ks

contains a real third root of αs−1, call it β. It must contain the other two third roots as well, namely
βζ3 and βζ23 . So ζ3 ∈ Ks, which contradicts Ks ⊂ R.
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