Galois Theory

May 18, 2016

Casus irreducibilis

Author: David Yao

Theorem 0.1 (casus irreducibilis) If $p(x) \in \mathbb{Q}[x]$ is an irreducible cubic polynomial with three real roots, then it is impossible to obtain any of the roots with only real radicals.

Lemma 0.2 Suppose F is a subfield of \mathbb{R} and let a be an element of F. Let p be prime and let $\alpha = \sqrt[p]{a}$ be the pth real root of a. Then $[F(\alpha) : F] = 1$ or p.

Proof of Lemma 0.2 Let m_{α} be the minimal polynomial of α over F, and suppose its degree is $d \leq p$. Since m_{α} divides $x^p - a$, all its roots are *p*th roots of a, in the form of $\alpha \zeta_p^j$ for some integer j, where ζ_p is the *p*th root of unity.

The constant term of m_{α} lies in F and is the product of all its roots, so it is $\alpha^d \zeta_p^k$ for some integer k, as products of pth roots of unity is still a pth root of unity. Therefore $\alpha^d \zeta_p^k$ is real. Since α^d is real, ζ_p^k is real, so $\zeta_p^k = \pm 1$.

Therefore $\alpha^d \in F$. $\exists a, b \in \mathbb{Z}$ s.t. ad + bp = (d, p) by Euclid's Algorithm. So $\alpha^{(d,p)} = (\alpha^d)^a (\alpha^p)^b \in F$. (d,p) = 1 or p. If (d,p) = p, since $d \leq p$, it follows that d = p and $[F(\alpha) : F] = d = p$. If (d,p) = 1, then $\alpha \in F$ and $[F(\alpha) : F] = 1$.

Proof of casus irreducibilis: Let p(x) be an irreducible polynomial in $\mathbb{Q}[x]$ with three real roots a, b, c. Consider the discriminant D of p(x).

$$D = (a - b)^{2}(a - c)^{2}(b - c)^{2}$$

Since we are in \mathbb{C} , p(x) is separable and a, b, c are all distinct. Since they are all real, D > 0, and it has a real square root $\sqrt{D} \in \mathbb{R}$. p(x) is still irreducible in $Q(\sqrt{D})$ because a quadratic extension cannot contain any root of p, an irreducible cubic whose roots have degree 3 over \mathbb{Q} . Now, since D is a perfect square in $\mathbb{Q}(\sqrt{D})$, the Galois group of p(x) over $\mathbb{Q}(\sqrt{D})$ is inside A_3 , so the splitting field of p(x) over $\mathbb{Q}(\sqrt{D})$ is at most degree 3. In other words, adjoining any root to $\mathbb{Q}(\sqrt{D})$ will give all three roots.

By way of contradiction, suppose one of the roots is expressable in real radicals, then it lives inside a real radical extension of \mathbb{Q} , and consequently lives inside a real radical extension of $\mathbb{Q}(\sqrt{D})$. By the previous discussion, all three roots are in that real radical extension of $\mathbb{Q}(\sqrt{D})$. We hence have the tower

$$\mathbb{Q} = K_0 \subset K_1 = \mathbb{Q}(\sqrt{D}) \subset K_2 \subset \cdots \subset K_s$$

where each $K_i \subset \mathbb{R}$ and $K_{i+1} = K_i(\sqrt[n_i]{\alpha_i})$ for some $\alpha_i \in K_i$, and $a, b, c \in K_s$.

Notice that $s \ge 2$ because p(x) is irreducible over K_1 , per previous discussion.

Notice also that for a simple radical extension $F(\sqrt[m_n]{\alpha})/F$, it can be further broken down into two simple radical extensions $F(\sqrt[m_n]{\alpha})/F(\sqrt[m_n]{\alpha})/F$. Therefore WLOG, we can assume that $K_{i+1} = K_i(\sqrt[m_n]{\alpha_i})$ for some prime p_i . By Lemma 0.2 we know that $[K_{i+1} : K_i] = p_i$.

WLOG, suppose that s is chosen so that K_s is the first field in the tower to split p(x), then by previous discussion, K_{s-1} does not contain any of the roots a, b, c.

Since K_{s-1} contains no root of p(x), p(x) is irreducible over K_{s-1} . Since p(x) splits in K_s , $[K_s : K_{s-1}]$ is a multiple of 3. However, this is a prime degree extension by assumption so $[K_s : K_{s-1}] = 3 = p_{s-1}$, i.e. $K_s = K_{s-1}(a, b, c)$ is the splitting field of p(x) over K_{s-1} , hence it is a Galois extension. By construction, $K_s = K_{s-1}(\sqrt[3]{\alpha_{s-1}})$, and $x^3 - \alpha_{s-1}$ is irreducible over K_{s-1} . As a Galois extension, K_s contains a real third root of α_{s-1} , call it β . It must contain the other two third roots as well, namely $\beta\zeta_3$ and $\beta\zeta_3^2$. So $\zeta_3 \in K_s$, which contradicts $K_s \subset \mathbb{R}$.

References

[1] David S. Dummit and Richard M. Foote, Abstract algebra, Third, John Wiley and Sons, Inc., Hoboken, NJ, 2004.